Global smooth solutions for a class of parabolic integrodifferential equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Solutions for a Class of Parabolic Volterra Integrodifferential Equations

u’(t)+Au(t)= ‘a(t,s)g(s,u(s))ds+f(t,U(t)), I 120, 0 u(0) = 0. The operator A is the negative infinitesimal generator of an analytic semigroup in a Banach space X. The operator g(t, u) is related to A by a special form g(t, a) = A”*q(t, u), where q(t, u) is an appropriate “lower order” operator. We show the existence and uniqueness of weak solutions and their continuability to infinity under sui...

متن کامل

Global Solutions and Quenching to a Class of Quasilinear Parabolic Equations

In this paper we consider a quasilinear parabolic equation a(ux)ut = uxx (a(s) a0 > 0) subject to appropriate initial and boundary conditions. This equation can be used to describe the uni-directional motion of uid in soft tissue. A criterion is found to ensure the global solvability or nite time quenching (i.e. ux becomes unbounded in nite time). A concrete example is that for a(s) = (1 + s), ...

متن کامل

Asymptotically Almost Periodic and Almost Periodic Solutions for a Class of Partial Integrodifferential Equations

In this note, we establish the existence of asymptotically almost periodic and almost periodic solutions for a class of partial integrodifferential equations.

متن کامل

Bounds of Solutions of Integrodifferential Equations

and Applied Analysis 3 Define a function m t by m t v t ∫ t 0 g s v s ds v t ∫ t 0 g s ds, 2.5 then m 0 v 0 u0, v t ≤ m t , v′ t ≤ f t m t , 2.6 m′ t 2g t v t v′ t ( 1 ∫ t 0 g s ds ) ≤ m t [ 2g t f t ( 1 ∫ t 0 g s ds )] . 2.7 Integrating 2.7 from 0 to t, we have m t ≤ u0 exp (∫ t 0 ( 2g s f s ( 1 ∫ s 0 g σ dσ )) ds ) . 2.8 Using 2.8 in 2.6 , we obtain v′ t ≤ u0f t exp (∫ t 0 ( 2g s f s ( 1 ∫ s ...

متن کامل

Smooth Solutions of a Class of Iterative Functional Differential Equations

and Applied Analysis 3 where i, j, and k are nonnegative integers. Let I be a closed interval in R. By induction, we may prove that x∗jk t Pjk ( x10 t , . . . , x1,j−1 t ; . . . ;xk0 t , . . . , xk,j−1 t ) , 1.11 βjk Pjk ⎛ ⎜⎝ j terms { }} { x′ ξ , . . . , x′ ξ ; . . . ; j terms { }} { x k ξ , . . . , x k ξ ⎞ ⎟⎠, 1.12 Hjk Pjk ⎛ ⎜⎝ j terms { }} { 1, . . . , 1; j terms { }} { M2, . . . ,M2; . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1996

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-96-01472-9